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Circle	arc	formula

Unit	circle	arc	formula.	

Area	of	circle	arc	formula.	Arc	of	semicircle	formula.	Minor	arc	of	a	circle	formula.	
Length	of	circle	arc	formula.	Great	circle	arc	formula.	Major	arc	of	a	circle	formula.	Circle	arc	formulas	geometry.	

The	distance	along	a	curve	with	a	vertical	curve	gives	a	straight	line	a	segment	whose	length	is	the	same	as	the	length	of	the	arc	of	the	curve.	

Arc	length	of	a	logarithmic	spiral	as	a	function	of	its	parameter	î.	Arc	length	is	the	distance	between	two	points	on	the	area	of	the	curve.	Determining	the	length	of	an	irregular	arc	segment	by	approximating	an	arc	segment	as	connected	(straight)	line	segments	is	also	known	as	a	term	curve.	The	correction	of	the	boosted	curve	has	a	finite	number	of
segments	(therefore	the	curve	is	of	finite	length).	If	the	curve	can	be	parameterized	according	to	an	injection	function	and	continuously	diversifiable	(i.e.,	the	derivative	is	a	continuous	function),	f:	[a,	b]	Â	r	n	{\displaystyle	f\color[	a,	b]\to\mathbbb{r	r	.}{n}	{n}},	then	the	curve	does	not	drop	out	(i.e.,	it	is	of	finite	length).	The	emergence	of	an
endlessly	massive	bill	has	led	to	a	general	scheme	that	in	some	cases	provides	solutions	in	a	closed	form.	A	general	approach	to	a	curve	using	multiple	line	segments	is	called	curve	listening.	A	plane	curve	can	be	approximated	by	connecting	endpoints	on	the	curve	to	(single)	line	segments	to	form	a	polygonal	path.	By	simply	calculating	the	length	of
each	line	segment	(using,	for	example,	the	Pythagorean	theorem	in	Euclidean	space),	the	total	approach	length	can	be	determined	by	summing	the	length	of	each	line	segment;	This	approximation	is	called	the	(cumulative)	distance.	[1]	If	the	curve	is	not	yet	a	polygonal	average,	then	using	smaller	line	segments	of	shorter	length	will	gradually	produce
a	better	approximation	of	the	curve	length.	

This	determination	of	the	length	of	the	curve	by	approximating	the	curve,	for	example	in	connected	(separate)	line	segments,	is	called	curve	correction.	The	duration	of	subsequent	approaches	will	not	decrease	and	could	continue	to	grow	indefinitely,	but	in	the	case	of	smooth	curves	they	will	meet	the	final	limit	after	obtaining	the	segmentssmall.
Some	curves	have	the	smallest	number	L	{\disoplayStyle	L}	which	is	the	upper	limit	of	all	polygonal	approximations	(corrections).	These	curves	are	called	straightening,	and	the	length	of	the	arc	is	determined	by	a	number.	The	length	of	the	arc	can	be	defined	to	provide	an	orientation	or	"direction"	of	the	sense	towards	the	control	point,	which	is
considered	the	starting	point	of	the	curve	(see	also:	Orientation	of	the	curve	and	drawn	distance).	[2]	Smooth	curve	formula.	Also:	curve	length	curve.	
Let	e:	[a,	b]	â	r	n	{\displayStyle	f\con	[a,b]\mathbb	{r}	^{n))	be	an	injective	and	constantly	differentiable	(i.e.,	the	derivative	is	a	continuous	function.)	function.	The	length	of	the	curve	given	by	f	{\reluctantly	f}	can	be	defined	as	the	number	of	line	segments	in	the	sum	of	the	boundaries	of	the	usual	interval	[a,	b]	{\displayStyle	[a,b]}	as	a	number.	The
number	of	segments	approaches	infinity.	This	means	that	l	(f)	=	lim	n	â	and	i	=	1	n	|	f	(t	i)	â	f	(t	i	â	1)	|	{\displayStyle	l(f)=\lim	_{n\infty	}\sum	{i=1}^{n}{\bigg	|}f(t_{i})-f(t_{i-1}){	\bigg|))	where	t	i	=	a	+	i	(b	â	(b	â)	/	n	=	a	+	i	t	{\displaystyle	t_{i}=a+i(ba)/n=a+i\delta	t}	z	î	t	=	b	â	n	=	t	i	â	t	i	â	t	i	â	1	{\disoPlayStyle	\delta	t={\frac	{ba}{n))=t_{i}-
t_{i-1	}}	and	if	i	=	0,	1,	¦,	n.	{\displayStyle	i=0.1,\dotsc,n.}	This	definition	is	equivalent	to	defining	the	standard	arc	length	as	an	integral:	l(f)=lim	n	ai=1	n|f	(t	i	)	â	f	(t	i	â	1)	|	=	lim	n	â	a	a	i	=	1	n	|	f	(t	i)	â	f	(t	i	â	1)	Î	t	=	â	'	i	B	|	F	â²	(	t)	Â	d.{\displayStyle	l(f)=\lim	_{n\infty	}\sum	{i=1}^{n}{\bigg	|}f(t_{i})-f(t_{i	-1}){\bigg|}=\lim	_{n\infty}\sum
{i=1}^{n}\left|{\frac	{f(t_{i})-f(t_{i-	1)))}	{\delta	t}	}\right|\delta	t	=\int	_{a}^{b}{\big	|}f'(t){\big	|}\dt.}	The	last	equality	proves	following	steps:	Calculation	of	the	second	fundamental	theorem	so	far	calls	f	(	t	i)	â	f	(t	i	â	1)	=F	²	²	(t	i	â	1	+	î	(t	i	â,	â,	â,	â,	â,	o	â,	a	-	-	""	"	â	â	â	î	i}	-T_	{i	-1})	\	d	\	theeta	}	where	t	=	t	i	â	1	+	î	(t	i	â	t	i	â	1)	{\displaystyle
t=t_-{i-1}+\\theeta(t_{i}-t_{i-1))}	ober	î	[0,	1	]	{\displaystyle	\theta	\in	[0,1]}	cards	in	[t	i	â	1,	t	i]	{\displaystyle	[t_{i	-	-	1},t_{i}]	a	d	t	=	(t	i	â	â	a	â	â	â	î	{{\displaystyle	dt=(t_{i}-t_{i--1})\,\,d\theta=\delta	t\,d\theta}.	Next	step,	the	following	equivalent	expression	is	used	t_	{	i	-1})	\d	\theta.}	function	|f	²	|	{\displaystyle	\left	|f'\right	|}	is	a	continuous
function	of	the	closed	interval	[a,b]	{\displaystyle	[a,b]	]}	over	the	series	of	real	numbers,	so	it	is	uniformly	continuous	according	to	the	Heine-Kantor	theorem	and	monotone	ni	CHT	ä	thicken	t	<\delta	(\varepsilon)	}	implicit	||F|F²(t	i)||<	Ffic	{\displaystyle	\left|\Left|f'(t_{i-1}+\theeta(t_{i}-t_{i-1})\	right	|-\	left	|	f'	(t_	{	i})	\	Right	|	<\	varepsilon	}	,
where	î	t	=	t	i	{\displaystyle	\delta	t=t_}	-t_	{i	-1}}	and	â	[0,	1]	{\displaystyle	\theta	\in	[0,1]}}}}	{\displayStyle	\theta	\in	[	v	[v	[0,1])}{	{\displaystyle	\theta	\in	[0,1]}}}	{\theta	\in	[0,1]}.	N	\to	\inty}}}	{\displaystyle	_{i=1}^{{n}\left	|	{\frac	{f	(t_	{i}))-f	(t_	{i-1})}	{\delta	t}}	\Right	|	\Delta	t-\sum_{i=1}^{n}\left	|	f	'(t_{i})\Right	|	\Delta	t.}	with	above
stepDeviant	â	i	=	1	n	|	Â	«	0	1	f	²	(ti	i	â	1	+	îrona	(ti	i	â	â	â	â	â	â	â	â	â	â	â	â	â	â	â	â	)	â	â	â	â	â	â	â	â	â	â	â	â	red))	â	d	himself	|	Î	T	â	I	=	1	n	|	f	²	(those)	|	Î	T	{\displayStyle	\sum	_{i=1}^{n}\left|	\int	_{0}^{1}f'(t_{i-1}+\theta	(t_{i}-t_{i-1})))\d\theta\droite	|	\delta	t-\sum	_{i=1}^{n}\left|	f'(t_{i})\droite|	\	delta	t.}	les	termes	sont	réorganisés	ainsi	ainsi	qu'il
deviant	î	t	â	i	=	1	n	(|	â	«0	1	f	²	(t	i	â	1	+	îrona	(t	i	â	â	â	1))	â	d	î	d	î	d	i	))	Ο	â	â	«0	1	|	fâ²	(you)	|	dîrona)	â	¦	î	t	â	i	=	1	n	(â«	0	1	|	f	â	(ti	i	â	1	+	îrona	(ti	i	â	t	i	â	1))	|	â	â€	0	1	|	f	â	(ti)	|	d	–	ron	)	=	–	t	–	i	=	1	n	–	0	1	|	f	²	(ti	i	â	1	+	îocy	(ti	â	ti	â	1))	|	â	|	f	²	(those)	|	Â	d	iron	{\displayStyle	{\start{aligné}&\delta	t\sum	_{i=1}^{n}\left(\left|\int	_{0}^{1}f'(t_{t_	{t_
{t_	{t_	{t_	{t_	{t_	{t_	{t_	i-1}	+	\	theta	(t_{i}	-t_{i-1})))	\	d	\	theta	\	droite	|	-\int_{0}^{1}\left|	f'(t_{i})\droite|	d\theta\droite)\\&\qquad\leqq\delta	t\sum	_{i=1}^{n}\left(\int	_{0}^{1}\left|f'(t_{i_	{i_{i_{i_-1}+\theta(t_{i}-t_{i-1}))\droite	|\d\theta-\int	_{0}^{1}\gauche	|f'(	t_{i})\\\droite|d\theta\droite)\\&\qquad=\delta	t\sum	_{i=1}^{n}\int
_{0}^{1}\left	|	f'(t_{i-1}	+	\	theta	(t_{i}	-t_{i-1}))	\	right	|	-	\	Left	|	f'(t_{i})\droite|	\	d	\	theta	\	end	{Aligné}}}	où	dans	le	côté	à	gauche	|	f	²	(those)	|	=	Â	«0	1	|	f	²	(those)	|	you	are	{\textStyle	\left|	f'(t_{i})\droite|	=\int_{0}^{1}\left|	f'(t_{i})\droite|	d\theta}	is	uty.	PAR	|	|.	f	²	(ti	i	â	1	+	îocy	(ti	â	ti	â	1))	|	â	|	f	²	(those)	|	|.	<Îµ	{\textStyle	\left|	\	Left	|	f'(t_{i-
1}	+	\	theta	(t_{i}	-t_{i-1}))	\	right	|	-	\	Left	|	f'(t_{i})\droite|	\	Correct	|	<\varepsilon	}	pour	n>	(b	â	a	)	/	î´	(îµ)	{\textStyle	n>(b-a)/\delta	(\varepsilon)}	de	sorte	que	î	t	<î´(îµ){\displayStyle	\delta	t	<\	delta	(\varepsilon)},	deviant	î	t	â	i	=	1	n	(|	â	«0	1	f	²	(t	i	â	1	+	îrona	(t	i	â	t	i	â	1))	â	d	îrona	|	â	|	f	â	(	t	i	)	|)	<	µ	n	î	t	{\displayStyle	\delta	t\sum
_{i=1}^{n}\left(\left|\int	_{0}^{1}f'(t_{i	-	1	}+\theta(t_{i}-t_{i-1}))\d\theta\droite|-\gauche|f'(t_{i})\droite|\droite)<\varepsilon	n\	delta	t	}	AVECF²	(TY)	The	sign	is	"0	1	|	F²	(T	Y)	|	D	{\	DisplayStyle	\	Left	|	E	'(T_	{I}	\	RIGHT	|	=	\	int_	{0}^{1}	\	left	|	e'	(t_	{i}	)	\	RIGHT	|	D	\	ata},	î	N	s	characters	are	equal	to	î	(b	â	A)	{\	dislaystyle	\	varepsilon	n	\	delta	t
=	\	varepsilon	(ba)}	and	n>	(b	â	A)	(î)	{\	\	\	\	\	\	\	\	this	\	\	\	was	shown	n	â	â	А	â	â	А	â	â	А	â	{{\	disoplaystyle	n	\	k	\	infty,}	î	(î	î)	â	0	{\	dislaystyle	\	delta	(\	varpsilon)	\	k	0}	So	î	{\	DisplayStyle	\	Varsilon	\	to	0}	Left	<{\	DisplayStyle	<}	approaching	0	{\	displaystyle	0}	In	other	words,	∙	i	=	1	n	|	f	(t	y)	-	f	(t	i	-	1)	-	t	|	The	sign	is	the	same	if	the	sign	is	1	n	|	F²
(t	y)	|	î	t	{\	disoplaystyle	\	sum	{i	=	1}^^{n}	\	left	|	{\	frac	{f	(t_	{i})	-f	(	t_	{i	-1})}	{\	delta	t}}	\	right	|	\	delta	t	=	\	sum	{i	=	1}^^^{n}	\	left	|	f	'(t_	{i}	\	do	i	|	\	delta	t	}	in	this	limit,	and	this	equality	is	simply	a	rim	integral	from	|	F²	(t)	|	{\	disoplaystyle	\	links	|	e	'(t)	\	RIGHT	|}	above	[a,	b].	\	n	/	a	ch	\	mathbb	{	r}^{n))	to	[a,	b]	{\	dispens	Laystyle	[A,
B]},	of	course,	always,	i.e.	hidden.	Determination	of	arc	length	with	a	smooth	curve	as	part	of	the	derivative	norm	corresponds	to	the	definition	L	(F)	=	SUP	I	=	1	N	|	F	(t	y)	-	f	(t	i	-	1)	|	{\	Displaystyle	L	(F)	=	\	Sum	{i	=	1}^{n}	{\	bigg	|}	f	(t_	{i})-f	(t_	{i-1})	{\	bigg	|}}}}}	}}}}}}}}}}}}}}}}	Where	the	highest	takes	into	account	any	distribution.	t_	{n-
1}	'){\big|}\varphi'(t)\dt\quad	or	integration}\\&=L(g).	\TIP{matched}}}}}	determining	cycle	length	using	integration,	see	also:	curve	in	differential	geometry	if	flat	curve	r	2	{\displaystyle	{r}{2}}}}}	}}	determined	with	the	equation	y	=	f	(	x),	{\displayStyle	y=f(x),},	where	f{\dislaystyle	f}	continuously	distinguishes	between	x=t}	and
y=f(t(t)\displayStyle	y=f(t).}	Each	infinitely	d	x	2	+	d	y	2	=	1	+	(d	y	d	x)	2	d	x	or	A	B	1	+	(d	y	d	x)	2	d	x	{\displaystyle	s=\int	_{a}^{b}{\sqrt{1+\left({\frac	{dy}}\to	the	right)^{2}\,}}dx	Closed	shape	solutions	include	Contact,	Circular,	Cycloid,	Logarithmic	Spiral,	Parabolic,	Semi	-	STRIPE	-Parabola	and	Straight	Line	The	lack	of	closed	solution	of
elliptical	and	hyperbolic	arc	length	led	to	the	development	of	ellipticalsIn	most	cases,	numerical	integration,	including	even	simple	curves,	is	not	a	solution	in	a	closed	form	for	the	length	of	the	arc	and	numerical	integration.	In	general,	numerical	integration	of	a	long	arc	is	very	effective.	For	example,	we	consider	the	task	of	finding	a	circumference
length	of	a	quarter	of	a	unit	by	numerical	integration	of	the	integral	of	the	arc.	The	upper	side	of	a	single	circle	can	be	parametricized	as	y	=	1	â	x	2.	{\	displaystyle	y	=	{\	sqrt	{1-x^{2}}}}.	SQRT	{2}}/2,	{\	SQRT	{2}}/2	\	RIGHT]}	is	a	quarter	of	a	circle.	Since	D	Y	/	D	X	sign	is	equal	to	â	X	/	1	â	X	2	{\	TextStyle	DY	/	DX	=	-x	{\	Big	/}	{\	SQRT	{1	-x	^
{2}}}	and	1	+	(D	Y	/	/	D	X	)	2	sign	is	1	/	(1	â	x	2),	{\	displayStyle	1+	(dy	/	dx)	^	{2}	=	1	{\	big	/}	to	the	left	(1-x	^	{2}	\	right),}	a	single	circle	On	a	quarterly,	this	is	the	circle	of	a	quarterly	unit	-	the	circle	of	a	quarterly	unit	-	the	circle	of	a	quarterly	unit	-	the	circle	of	a	quarterly	unit	-	the	length	of	the	circle	"2/2	2/2	d	X	â	â	â	â	â	â	â	â	â	\	int	_	{	-	{\
squrt	{2}//sqrt	{2}/	2}	^	{{\	sqrt	{2}/2}	{\	frac	{dx}	{\	sqrt	{1-x	^	{2}}}}}}	\	\	\	\	\	\	â	2/2	2/	2	The	sign	is	ï	2	{\	posterstyle	\	arcsin	x	{\	bigg	|}	{-	{\	sqrt	{2}/	2}	^	{\	sqrt	{2}/	2}	==	{\	frac	{\	pi}	{2}}	{2}}	{2}}	{2}	}}	1,3	x	10	x	11	and	16	Gaussian	pixels	Kuboid	Rules	Assessment	1.570796326794727	deviate	only	1.7	x	10-13	from	the	actual
length.	This	means	that	this	almost	machine	accuracy	can	be	estimated	only	with	the	help	of	16	points	of	integrity	.	Superficial	curve	let	X	(and,	v)	{\	displayStyle	\	mathbf	{x}	(and,	v)}	will	be	a	surface	map,	and	let	C	(t)	=	(	and	(t),	v	(t))	{\	displayStyle	\	mathbf	{c}	(t)	=	(u	(t),	v	(t))}	-	the	curve	of	this	surface.	The	integral	integral	of	the	length	of	the
arc	is	equal	to	(x	â	C)	²	(t)	|	;	{\	Display	style	\	links	|	C)	=	(x	u	â	x	v)	(u	â	v	²	²)	=	x	u	u	u	â	+	x	v	v	²	².	{\	DisplayStyle	D	(\	Mathbf\circ\mathbf{c})=(\mathbf{x}_{u}\\\\onhbf{x}_{v})onom{u'}{v')}=\mathbf{x}_}	{{u}u'+\mathbf{x}_{v}v'.}кваours=========)'+\mathbf{x}_{v}v'\right)\cdot(	\mathbf{x}{u}u'+\mathbf{x}{v}v')	=
g_{11}\\\\left(u'\right)^{2}+2g_{12}u'v	'	+	g_{22}\Left(v'\right)^{2}}}	(where	g	i	j	{\displaystyle	g_{ij}}}}}}}}}}}}}}}}}}	-	The	g	a	b	(u	a)	â	²	²	²	²	{\displayStyle	{g_{ab}\Left(u^{a}	\right)	'\	Left	(u^{b}\right)'\,}}}	}	(	where	u	1	=	u	{\displayStyle	u^{1}=u}	and	u	2=v{\displayStyle	u^{	2}	=	v}	)	Other	coordinate	systems	allow	-curve	,
expressed	in	C(t)=	(r(t	),î(t)){\displayStyle\mathbf{c}(t)=(r(t),\theta(t))}	polar	coordinates	The	image	transformed	from	polar	coordinates	to	rectangular	coordinates	is	x(	r	,	î)	=	(r	cos	Â	î	î,	r	sin	"î).{\DisplayStyle\Mathbf{x}(r,\theta)=	(r	\cos\theta,	r\sin\	theeta).}	The	arc	integral	is	|(x	Â	c)²(t)	|Field{\DisplayStyle\Left|\Left(\mathbf{x}\circ\mathbf	{c}	\
line)	'(t)	\	line	|.}	The	rule	of	vector	fields	shows	that	d	(X	Â)	=	=	X	r	{\d	isplayst	eyle	d(\mathbf	{x}\circ	\mathbf	{c})=\	mathbf	{x	}{r}r'+\mathbf	{x}{\theta	}\theeta'.	The	arc	length	integral	-	(x	r	Â	x	r	)(r	Â²)	2	+	2	(x	r	î	)	r	Â	²	â	²	(x	Î	î)	(î	²)	2	=	(r	²)	2	+	r	2	(î	²)	2.	{	\displayStyle\	Left	(\	mathbf	{x_	{r))	\	cdot	\	mathbf	{x_}	\	right)	\	Left
(r'\right)^{2}+2\Left(\mathbf	{x)}{r}\	cdot	\mathbf	{x}_	{\theta	}\right)r'\	theta'	+	\left{x}	_{\theta	}\cdot	\mathbf	{x}_{\\theta	}\right)\left(\	theeta'\	right)^{	2}=\Left(r'\right)^{2}+r^	{2}\Left(\theta'\right)^{	2}.}	So	for	a	curve	expressed	in	polar	coordinates	the	arc	length"T	1	t	2	(D	r	d	t)	2	+	r	2	(t	=	î	(t	2)	î	(t	2)	î	(t	2)	2	+	r	2	d	*	{t_	{1}}}}}	{t_
{2}}	{\	frac}}}}}}}}}}}}}}}}	}	\	right)	^	2}}}}}}}}}}}}}})}}}}}}}}}}}}}}}}}}}}}})}}}}}}}}}}}}	{\	s)}}}}})}}}}}})}}}}}}})}}}}}}	{*	}	{d	{}}	\}	+	r}}}}}}}}}}}}}}}}}}}}	\	dilaystyle	r	=	r	(\ta)}	parametro	with	t	=	î	î	î	{dilaystyle	t	=	\	theta}.	Now	be	c	(t)	=	(r	(t),	ï	(t)	ï	(t)	{\	disoplaystylea	\	t)	=	(t),	\	theta	(t),	\	Phi,	\	Phi,	\	Phi	(t)}	and	a
sort	of	spherical	coour	rs	{displaystyle	dally	z}	and	pear	ï	ï	ï	ï	ï	ï	{{{{ï	{\	dislisestyle}	and	the	azimutal	angle	.	I	am	Ï	ï	ï	ï	ï	ï	ï	ï	ï	听	light	ive	pronunciation	ï	ï	ï	ï	ï	ï	Where	was	Where	is	ï	ï	а	is	а	ي	{{р	{{{{{р	{	\	Displaystyle	\	MATHBF	{x}	(r	\	phi)	=	(r	\	phi,	r	\	phi,	r	\	the	cos	\.	Use	of	dells	of	the	circuity	a	lÎl	Îl	Îl	Îl	Îl	Îl	Îl	Îl	â	Î	Îl	î	Îl	î	Îl	Îl	Îl	î	Î	Îl	î	ï	î	Î	Îl	î	ï	ï	Îl	î
ï	ï	Îl	î	ï	ï	Îl	î	ï	ï	Îl	î	ï	ï	Îl	î	ï	ï	Îl)	Iree	from	from	from	from	from	to	Île	(to	light	²	²	²	²	²	c).	{\	display	d	(\	mathbf	{circh	\	m	mathbf	{c})	=}}}}}}}}}}}}	'+	\	the	phi}	\	phi	'.	·	م	DisplayStyle	J}	Very	WORK	(X	â	is	light	(Îl	Îl	Île)	(Îl	Îl)	(h-ב)	(Îl)	=	(r²)	2	+	r	2	(Îs	(ï	(ï	(ï	ï	(left	ï)	{r})	{r}	(cdot	\	mathbf	{x}	_}	_}	\	left)	\	left	(r	^	2}	\	left	(Matahbf}	_}}	_}	_	{\	theta}	\
left)	\	left	(	\	right)	^	2}	+	\	mathbf}}}}	\	phi}	\	phi	'\	phi'	\	phi	'\	phi'	\	Left	(R	'\	RIGHT)	^	2}	+	r}	*}	+	r}	+	r}	+	r}	*}	*}	\A	curve	expressed	in	spherical	coordinates,	the	length	of	the	arc	is	“t	1	t	2	(d	r	d	t)	2	+	r	2	(d	t)	2	+	r	2	sin	2	î	î	î	(d	ï	d	t)	2	d	t.	({\frac	{d\eta	}{dt))\right)^{2}+r^{2}\sin	^{2}\theta	\left({\frac	{d\phi	}{dt))}	}	\)	^{	2}	a
left({\phrac	{d\eta	}{dt))\right)^{2}+\left({\frac	{dz}{dt}\riga	)^{2}\	,}dt.	Info:	Circle	circulation	is	labeled	S	because	the	Latin	word	for	length	(or	size)	has	space	in	the	following	lines	r	{\displastyle	R}	denotes	the	circle's	radius.,	C{\displayStyle	C}	is	its	Perimeter,	s{\disoplastyle	S}	is	the	length	of	the	circle,	and	î	{\dilastyle	\theta	}	is	the	angle
where	the	circles	are	at	the	center	of	the	circle.	S}	are	expressed	in	equal	units.	C	=	2	ï	r,	{\displayStyle	c=2\pi	r,},	which	is	identical	to	c=ïd.	{\displastyle	c=\pi	d.}	This	equation	is	the	definition.	{\displayyle\pi.}	if	the	circle	is	a	half	slope.	

,	then	s	=	ï	r.	or	{\disoplastyle	s=r\theta.}	This	is	the	definition	of	a	radian.	If	{\displaystyle	\theta	}	is	in	degrees,	then	s=ï	r	î	180	{\displaystyle	s={\frac	{\pi	r\pi	r\eta	}{180^{\circ	),}	is	what	itself	self	itself	as	S	=	C	î	360	â.	or)	then	s	=	ï	r	î	200	degrees,S	=	{\frac	{\pi	r\theta	}{200{\text{deg))))),}	which	is	the	same	as	s=c	î¸	400	â	deg.	
{\dispastyle	s={\frac	{c\theta	}{400{\text{deg))))}.}360°	or	360°	or	or	400	degrees	or	radian)	then	s=c¸/1	â	trip	{	\display	style	s=c\theta	/	1{\text{Trip))}.	Great	circles	on	Earth	Main	article:	Great	circle	distance	Further	information:	Ellipsoid	surveying	See	also:	One	degree	length	and	slope	of	the	meter	§	Two	units	of	length,	the	nautical	mile	and
the	meter	(or	kilometer),	have	been	defined.	by	origin	"Origin	of	the	Arc	of	Great	Circles"	the	circles	on	the	surface	of	the	Earth	will	simply	be	digitally	related	to	the	angles	they	are	subjected	to	at	the	center.	
A	simple	equation	applies	to	the	following	terms:	if	it's	in	nautical	miles	and	î¸	{\displiTStyle	\theta}	minutes	of	arc	(1	60	degrees),	or	if	it's	in	kilometers	and	it's	in	degrees	Celsius	(1	÷	100	degrees)	.	The	length	of	the	distance	units	was	chosen	so	that	the	circumference	of	the	earth	was	40,000	kilometers	or	21,600	nautical	miles.	These	are	the
numbers	of	the	corresponding	angular	units	on	a	full	turn.	These	definitions	in	meters	and	nautical	miles	have	been	replaced	with	the	most	accurate	ones,	but	the	original	definitions	are	still	accurate	enough	for	conceptual	purposes	and	some	calculations.	For	example,	they	mean	that	a	kilometer	equals	exactly	0.54	nautical	miles.	Using	official
modern	definitions,	a	nautical	mile	is	exactly	1.852	kilometers	[4],	which	means	that	1	kilometer	is	approximately	0.53995680	nautical	miles.	[5]	These	modern	coefficients	differ	from	the	original	definitions,	calculated	by	less	than	10,000	§.length	Historical	methods	Antiquity	For	much	of	the	history	of	mathematics,	even	the	greatest	thinkers	believed
that	it	was	impossible	to	calculate	the	length	of	an	irregular	arc.	Although	Archimedes	was	the	first	to	find	the	area	under	a	curve	using	his	"exhaustion	method",	some	believed	that	curves,	like	straight	lines,	could	also	have	a	definite	length.	In	this	area,	as	was	often	believed,	the	first	base	was	badly	broken.	People	began	to	inscribe	polygons	on
curves	and	count	side	lengths	to	accurately	measure	length.	By	using	more	segments	and	decreasing	the	length	of	each	segment,	they	were	able	to	obtain	an	increasingly	accurate	approximation.	
In	particular,	they	were	able	to	find	approximate	values	of	Ï	by	inscribing	a	many-sided	polygon	in	a	circle.[6][7]	17th	century	In	the	17th	century,	the	method	of	exhaustion	made	it	possible	to	correct	several	transcendental	curves	by	geometrical	methods:	in	1645	Evangelista	Torricelli's	logarithmic	spiral	(some	sources	say	John	Wallis	in	1650),
Christopher	Wren's	cycloid	in	1658,	and	the	contact	network.	

Gottfried	Leibniz	in	1691.	In	1659,	Wallis	credited	William	Neale	with	discovering	the	first	solution	to	a	nontrivial	algebraic	curve,	the	semicubic	parabola.[8]	The	added	figures	are	given	on	page	145.	On	page	91,	William	Neal	is	listed	as	Guilelmus	Nelius.	Integral	Form	Before	the	fully	formal	development	of	calculus,	the	basis	for	the	modern	integral
form	for	arc	length	was	independently	discovered	by	Hendrik	van	Heuraet	and	Pierre	de	Fermat.	In	1659,	van	Heuraets	published	a	construction	showing	that	the	problem	of	determining	the	length	of	an	arc	can	be	transformed	into	the	problem	of	determining	the	area	under	a	curve	(ie,	the	integral).	As	an	example	of	his	method,	he	determined	the
arc	length	of	a	half-cubic	parabola,	which	required	finding	the	area	under	the	parabola.[9]	In	1660	Fermat	published	othersTheory	containing	the	same	result	associated	with	the	sound	of	linear	dynamic	geometry	Cumvarum	cum	reic	(geometric	dissertation	on	curved	lines	compared	to	the	line).	[10]	Fermatian	method	to	determine	the	length	of	the
arch	consisting	of	his	previous	work	with	January	Frac	{1}	{2}}},	so	the	equation	of	the	tangent	line	should	have	equation	y	=	3	2	and	1	2	(x	â	a)	+	+	f	(one).	{\	Scipptistle	y	=	{3	\	per	2}	and^{\	frac	{1}	{2}}	(x-a)	+	f	(a).	Segment.	A	relatively	good	curve	length	approximate	from	and	to	D.	
To	detect	the	length	of	the	alternating	current	segment,	a	sentence	pythagoras	was	used:	a	c	2	=	a	b	2	+	b	2	=	î	ears	2	+	9	4	and	î	2	=	î	µ	2	=	(1	+	9	4	4	a)	{)	\	dysplaystyle	{\	start	{wyrónany}	ac	{2}	&	=	ab^{2}	+	bc^{2}	\\	&	=	\	varsilon	{2}	+}	+}	+}	+}	+}	+}	+}	+}	+}	+}	+	{9	\	ponad	4}	and	\	varsilon	{2	}	\\	&	=	\	Varepsilon	^{2}	\	left	(1+
{9	\	above	4}	and	\	right)	\	End	{yd}}}}}	4	4}	4}.	{\	Displaystyle	Ac	=	\	Varepsilon	{\	sqrt	{1+	{9	\}	and	\,}}.	In	general,	the	curves	also	see:	the	king	of	the	paradox	king.	X	â	â	à	(1	/	x)	{\	Displaystyle	x	\	cdot	\	sin	(1	/	x)}	as	described	above,	some	curves	are	not	easy.	This	means	that	there	is	no	upper	polygonal	approximate	length	of	length;	Length
can	be	free.	
It	is	unofficially	said	that	such	curves	have	an	infinite	length.	There	are	permanent	curves	on	which	each	bow	(different	from	the	bow	to	one	point)	has	an	endless	length.	
An	example	of	such	a	curve	is	the	Koch	curve.	
Another	example	of	an	endless	length	curve	is	the	function	graphics	defined	by	f	(x)	=	â	x	sin	(1/x)	for	any	open	set	of	one	of	which	is	one	of	its	restrictions,	and	f	(0)	=	0.	Sometimes	measurement	Hausdorff	and	Hausdorphff	dimensions	used	to	estimate	the	amount	of	this	sizeGeneralization	of	collectors	with	(pseudo)	rimann	be	m	{\	displaystyle	m}	A
collector	(pseudo)	rimann,	Î³:	[0,	1]	{\	displaystyle	\	gamma:	[0.1]	\	primary	m}	{{\	displaystyle	M}	and	G	{\	DisplayStyle	g}	(pseudo-)	metric	tensor.	The	length	is	defined	as	â	(î³)	=	â	„0	1	±	g	(î	²	²	(t),	î	(t))	re	t,	{\	displastyle	\	ell	(\	gamma)	=	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	\	int	_	{0}^{1}	{\	sqrt	{\	pm	g	\	left	(\	gamma	'(t),	\	gamma'	(t)	\	right)
\,}	dt,}	where	î³	²	î	t	therefore	(time	(time	(time	(time	(time	(time	(time	(time)	t)	m	{\	displaystyle	\	gamma	'(t)	\	in	t	_	{γ	(t)	m	becomes	once	chosen	For	a	given	curve	to	ensure	that	the	square	root	is	a	real	number	A	positive	sign	is	chosen	to	draw	curves	The	pseudo-Roman	variant	can	choose	a	negative	sign	for	donations	The	length	of	the	curve	is	a
real	negative	number.	Curves	which	are	partly	cosmic	and	partly	temporal	are	generally	ignored.	In	relativity,	the	length	of	the	arc	is	the	time	of	the	curves	(lines	of	the	world)	at	the	right	time	along	the	line	of	the	world,	and	the	length	of	the	Arc	of	the	space	curve	at	the	appropriate	distance	along	the	curve	See	also	Arc	(geometry)	Crofton	Formula	of
integral	district	El	Integral	geodesic	liptical	Integral	ternary	equation	equation	integral	ARC	ARC	MULTIDIMENSIONAL	CALCULATION	OF	REFERENCE	references	^	alberg;	Nilsson	(1967).	
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